海博
海博
西安交通大学郗平副教授论文由优博在线娱乐顶尖数学期刊《Inventiones mathematicae》在线发表
2019-10-09
西安交通大学
作者:

  近日,西安交通大学郗平副教授的论文“When Kloosterman sums meet Hecke eigenvalues”已在线发表于优博在线娱乐顶尖数学期刊《Inventiones mathematicae》。

  在长达67页的论文中,郗平研究了美国科学院院士、普林斯顿大学Nicholas Katz教授提出的Kloosterman和模结构问题(下称Katz问题),即模为素数p的Kloosterman和是否对应于某个Hecke-Maass尖形式的第p个Hecke本征值?若是,则可由素数模的Kloosterman和作为局部因子构造一种Euler乘积,其本质为Hecke-Maass尖形式的L函数,这将为解决著名的Kloosterman和Sato-Tate猜想提供强有力的分析工具。

  长期以来,对Katz问题的研究始终处于探索阶段。直至2000年,英国布里斯托大学Andrew Booker教授指出,若Kloosterman和与Hecke本征值一致,则对应的尖形式的相关参数必须足够的大,这为否定回答Katz问题提供了数值上的支持。最近,郗平在Katz问题上取得了实质性突破,即证明了对任意给定的Hecke-Maass尖形式,均存在无穷多个殆素数(即素因子个数不超过给定大小的正整数),使得对应的Kloosterman和与Hecke本征值并非一致。在证明过程中,他利用代数几何中的l-adic上同调给出了Kloosterman和与Hecke本征值的某种非关联性的定量刻画,同时还提出了一类新的Selberg加权筛法,得以更加有效地捕获殆素数。在方法上,不仅深化了巴黎十一大Étienne Fouvry教授与瑞士洛桑联邦理工学院Philippe Michel教授等人的工作,也给出了一种广义的Barban-Davenport-Halberstam型均值定理并发展了渐近形式的二维Selberg筛法,相关思想亦可应用于其它诸多数论问题中。审稿人指出,“在该问题上,本文首次成功避开了Maass尖形式的Ramanujan猜想”,并认为“文中成功处理的情形是令人吃惊的”。

  郗平于2004年进入西安交通大学理科试验班学习,自2008年加入数论团队,2014年在易媛教授与Philippe Michel教授联合指导下获得博士学位。主要研究领域为数论,涉及代数迹函数的解析理论、素数分布、筛法及自守形式等方面的研究。

  论文信息:

  Ping Xi, When Kloosterman sums meet Hecke eigenvalues, Invent. math., https://link.springer.com/article/10.1007/s00222-019-00924-y

免责声明:

① 凡本站注明“稿件来源:海博”的所有文字、图片和音视频稿件,版权均属本网所有,任何媒体、网站或个人未经本网协议授权不得转载、链接、转贴或以其他方式复制发表。已经本站协议授权的媒体、网站,在下载使用时必须注明“稿件来源:海博”,违者本站将依法追究责任。

② 本站注明稿件来源为其他媒体的文/图等稿件均为转载稿,本站转载出于非商业性的教育和科研之目的,并不意味着赞同其观点或证实其内容的真实性。如转载稿涉及版权等问题,请作者在两周内速来电或来函联系。

高校动态
数读高校
高校智者汇
相关新闻